## The Amortization Method of Loan Payment

The amortization method is the most common method of loan repayment. The fundamental principle behind it is simple. When a payment is made, it must be first applied to pay interest due and then any remaining part of the payment is applied to pay principal.

Consider a loan for 30000\$ with level payments to be made at the end of each year for 5 years at an annual rate of 8%.

Level loan payment can be calculated as:

Payment 1. Beginning Balance = 30,000

```
30000 = Ra_{\overline{5}|}
R = 7513.69
```

```
Interest due = 30,000(.08) = 2,400

Payment made = 7513.69

Interest paid = 2400

Principal paid = 7,513.69 - 2,400.00 = 5,113.69

Balance after payment = 30,000 - 5,113.69 = 24,886.31

Payment 2. Beginning Balance = 24,886.31

Interest due = 24,886.31(.08) = 1,990.90

Payment made = 7513.69

Interest paid = 1,990.90

Principal paid = 7,513.69 - 1,990.90 = 5,522.79

Balance after payment = 24,886.31 - 5,522.79 = 19,363.52
```

```
amortization_table<-function(Loan,n,m,i){ j=((1+(i/m))^n)-1 #converting of nominal interest rate to eff
term=n*m
pv_imm_ann = function(a, i, n) {
x = 0
r=1/(1+i)
for(i in 1:n) x = x + a * r^{(i)}
return(x)
}
P<-solve(pv_imm_ann(1,j,term),Loan)
interest = principal = balance =payment= vector("numeric", term)
# calculate amortization schedule
outstanding_principal = Loan
for (i in 1:term) {
pymnt= P
intr = outstanding_principal * j
prnp = P - intr
outstanding_principal = outstanding_principal - prnp
payment[i] =pymnt
interest[i] = intr
```

```
principal[i] = prnp
balance[i] = outstanding_principal
}
schedule<-data.frame(month = 1:term,payment, interest, principal, balance)
schedule<-round(schedule,3)
return(format(schedule,scientific=F))
}
amortization_table(30000,5,1,0.08)</pre>
```

Now we can summarize the amortization using the following notation. For loan with periodic interest rate i,

Loan payment at time  $k:Pmt_k$ 

Loan balance after  $Pmt_k$  is made: $Bal_k$ 

Principal paid in period  $k:PRin_k$ 

Note that the loan amount is  $Bal_0$ . For  $k \geq 1$  the amortization method is described by the recursive relations:

```
Interest paid in Pmt_{k+1}: Int_{k+1} = i(Bal_k)
Principal paid in Pmt_{k+1}: PRin_{k+1} = Pmt_{k+1} - i(Bal_k)
```

## Formulas for Level Payment Loan Amortization

It can be shown that for a level payment loan with payment P, Interest paid in  $Pmt_t$ :  $Int_t = P(1 - v^{n-t+1})$  Principal paid in  $Pmt_t$ :  $PRin_t = Pv^{n-t+1}$